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Three-dimensional boundary-layer ° ow
past a cusp secured to a ° at plate

By G. G. Vilensky

Research and Production Enterprise Marine Equipment 46,
Primorsky Prospect, St Petersburg 197374, Russia

The paper deals with the boundary-layer ®ow developing near the rib of the corner
formed by a ®at plate and a cusp secured to its surface. The analysis focuses on
the asymptotic description of the plate’s ®ow. The latter is shown to consist of two
characteristic domains, each containing its own boundary layer. One of them develops
from the leading edge of the plate, whereas the other one starts from the rib of the
corner. The work concentrates on the mechanism of ®ow adjustment in the region
where these two boundary layers overlap.

Keywords: boundary layer; viscous ° ow;
marched asymptotic expansions; ° ow collisions

1. Introduction

Owing to their practical importance, three-dimensional viscous ®ows in corner regions
have been studied extensively experimentally, numerically and theoretically. Some
impression of the state of the art can be derived from the publications by Rubin
(1966), Anderson et al . (1990), Smith & Gajjar (1984), Walton & Smith (1997) and
Dhanak & Duck (1997). A detailed analysis of literature on this issue is presented
in Dhanak & Duck (1997). In the theoretical sense, such ®ows present a model that
permits one to gain an insight into the structure of an essentially three-dimensional
viscous ®ow. The purpose of the present work is to study the particular ®ow case
when the walls of the corner are curved so as to exert a large cross-stream pressure
gradient on the secondary viscous motion. The paper deals with the ®ow about a
streamlined corner formed by a cusp and a ®at plate, as shown in  gure 1. The details
of the geometry and the related potential ®ow solution are outlined in x 2. In x 3 we
show that this ®ow con guration is remarkable for the simultaneous existence of two
boundary-layer ®ows at the surface of the plate. One of them develops from the lead-
ing edge of the plate, as would normally be expected, whereas the other one originates
from the rib of the corner OL and is driven by the favourable cross-stream pressure
gradient created by the cusp. Both ®ows merge in a bu¬er region. Its characteristic
feature is the coexistence of the two opposite directions of disturbance propagation,
each one associated with the related incoming boundary-layer ®ow. This makes the
bu¬er region inaccessible for the usual numerical marching procedures. However, it
appears that consistent ®ow description is still possible within the framework of the
conventional boundary-layer approach without recourse to full equations of motion.
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Figure 1. Flow geometry.

2. Potential ° ow

Consider an incompressible inviscid ®ow past a three-dimensional corner formed by a
semi-in nite ®at plate and a streamlined cusp secured vertically to the plate’s surface
so that the leading edges of the cusp and the plate intersect at a right angle at a
point O, as in  gure 1. Introduce a Cartesian frame l(O; x0; y0; z 0). The axes Oy0 and
Oz0 coincide with the leading edge of the cusp and the plate, respectively. The axis
Ox0 is normal to the plane Oy0z0. The plate satis es the relations y0 = 0, x0 > 0. The
walls of the cusp near the origin are given by the equation z0 = §b(x0) ¬ =¬ + ,
as x0 ! 0; b is a positive constant, ¬ > 1. The projections of the velocity vector
on the coordinates l(x0; y0; z0) are U1 (u0; v0; w0). The non-dimensional pressure is
p0 = (p ¡ p 1 )=( » ¤ U2

1 ). Here p is the pressure at a given point, » ¤ = const: is the
®uid density, p 1 and U1 are the pressure and the velocity in the incident freestream,
which is uniform and parallel to the x0-axis. l is a characteristic length-scale.

Let us  rst consider the inviscid ®ow outside any boundary layer. Assume that
the motion is irrotational and introduce the ®ow potential © : r © = (u0; v0; w0). It
satis es Laplace’s equation in the ®uid domain,

@2

@x02 +
@2

@y02 +
@2

@z02 © = 0; (2.1)

and the boundary conditions of zero normal velocity on the cusp and the plate,
respectively:

1

1 + b2(x0)2¬ ¡2
¨b(x0) ¬ ¡1 @©

@x0 +
@©

@z0 = 0 on z 0jx ! 0 = §b(x0) ¬ =¬ + ;

(2.2)

@©

@y0 = 0 on y0 = 0; x0 > 0: (2.3)
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In order to obtain a physically realistic solution, we require that the velocity be  nite:

jr © j < 1 as r ² x02 + y02 + z02 ! 0: (2.4)

In what follows, we shall con ne the analysis to the study of the local ®ow in the
vicinity of the point O, where r ! 0. Thus, no boundary conditions at in nity are
imposed here.

Since the width of the cusp near its leading edge is O((x0) ¬ ), the cusp surface is
described by z0 = 0 to leading order, and the boundary condition (2.2) reduces to
(2:20):

@©

@z0 = 0 on z0 = 0: (2:20)

The problem (2.1), (2:20), (2.3), (2.4) possesses the following set of eigenfunctions:

r2j + ® C
® + 1=2
2j (cos #)(sin #) ® cos( ® ’); ® = k=2;

k = 0; 1; 2; 3; : : : ; j = 0; 1; 2; 3; : : : :

Here,

y0 = r cos #; x0 = r sin # cos ’; z0 = r sin # sin ’;

0 6 ’ 6 2 º ; 0 6 # 6 º ; C ® + 1=2
2j (s)

are ultraspherical polynomials as de ned in Abramovitz & Stegun (1979). Following
Nazarov & Plamenevskij (1991), we construct the asymptotic solution (as r ! 0)
to the problem (2.1){(2.4) in the form of the series in these eigenfunctions and the
forced terms resulting from the above reduction of the boundary condition (2.2) to
the plane z0 = 0. It will su¯ ce, for our purposes, to consider only the main terms of
the solution:

© = const: + U0x0 + U0b¬ ¡1 » ¬ 1 + cos 2 º ¬

sin 2 º ¬
cos ¬ ’ + sin ¬ ’

+ fforced terms if ¬ < 5=4g + c1 » 3=2 cos 3
2
’ + ; if 1 < ¬ < 3

2
: (2.5 a)

Here, » =
p

x02 + z02 ½ 1, U0 is the velocity at the point O, and c1 is an arbitrary
constant that depends on the global ®ow structure. The  rst, second and last terms
in (2.5 a) are the local eigenfunctions.

When ¬ = 3
2

the order of magnitude of the underlined forced term coincides with
that of the eigenfunction » 3=2 cos 3

2
’, and the sought solution takes the following

form:

© = const: + U0x0 + » 3=2(c1 cos 3
2
’ + 2

3
U0b sin 3

2
’) + ; if ¬ = 3

2
: (2.5 b)

When ¬ > 3
2

the local solution is dominated by the above mentioned three eigen-
functions. Thus, without loss of generality in what follows we shall assume that
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1 < ¬ 6 3
2
. For the velocity vector and the pressure we have (1 < ¬ < 3

2
)

u0 = U0 + U0b» ¬ ¡1 1 + cos 2 º ¬

sin 2 º ¬
cos(( ¬ ¡ 1)’) + sin(( ¬ ¡ 1)’) + ; (2.6 a)

v0 = const: 2r cos #C2
1=2(cos #) ¡ » sin #

dC1=2
2 (cos #)

d cos #
+ ; (2.6 b)

w0 = U0b» ¬ ¡1 ¡ 1 + cos 2º ¬

sin 2º ¬
sin(( ¬ ¡ 1)’) + cos(( ¬ ¡ 1)’) + ; (2.6 c)

p0 = p0 ¡ U2
0 b» ¬ ¡1 1 + cos 2 º ¬

sin 2 º ¬
cos(( ¬ ¡ 1)’) + sin(( ¬ ¡ 1)’) + ; (2.6 d)

where p0 = p0(0; 0; 0). Here and everywhere below the solution for ¬ = 3
2

can be
obtained from the solution for the case ¬ < 3

2
(i.e. from (2.6) in the present context)

by formal substitution of c1 for U0b(1 + cos 2 º ¬ )= sin 2 º ¬ .
Finally, note that when ¬ = 3

2
and c1 = 0 the pressure is constant along the

surfaces ’ = 0; 2 º . Hence, with an appropriate choice of the higher-order terms the
walls of the cusp, z0 = §b(x0) ¬ =¬ + , become free streamsurfaces. In this case, the
obtained solution coincides locally with the two-dimensional results of Kirchho¬ free
streamline theory (see Imai 1953; Sychev et al . 1987), i.e.

u0 = U0 + U0b» 1=2 sin ’=2 ¡ 5
6
U 2

0 b2x0 + ;

w0 = U0b» 1=2 cos ’=2 + 5
6
U 2

0 b2z0 + ;

p0 = p0 ¡ U0b» 1=2 sin(’=2) ¡ 1
2
(U2

0 b2 » ) + 5
6
U 2

0 b2x0 ¡ 5
6
U2

0 b2z0 + :

3. Boundary-layer ° ow at the plate

Consider three-dimensional boundary-layer ®ow along the plate y0 = 0 which devel-
ops from its leading edge x0 = y0 = 0 (see  gure 1). Assume that the global Reynolds
number Re = LU 1 =¸ is large ( ¸ is the kinematic viscosity of the ®uid), so that the
®ow is governed by the equations

u0 @u0

@x0 + vY
@u0

@Y
+ w0 @u0

@z0 = ¡ @p0

@x0 +
@2u0

@Y 2
; (3.1 a)

u0 @w0

@x0 + vY
@w0

@Y
+ w0 @w0

@z 0 = ¡ @p0

@z 0 +
@2w0

@Y 2
; (3.1 b)

@p0

@Y
= 0; (3.1 c)

@u0

@x0 +
@vY

@Y
+

@w0

@z 0 = 0; (3.1 d)

subject to no-slip and main-stream conditions

u0 = vY = w0 = 0 on Y = 0; (3.2 a)

u0 ! U0; as Y ! 1; (3.2 b)

w0 ! U0b» ¬ ¡1 ¡ 1 + cos 2 º ¬

sin 2 º ¬
sin(( ¬ ¡ 1)’) + cos(( ¬ ¡ 1)’) ; as Y ! 1: (3.2 c)
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Here, vY = Re1=2v0 and Y = Re1=2y0, 1 < ¬ 6 3
2
. The pressure gradient on the

right-hand side of (3.1 a), (3.1 b) is determined by the expression (2.6 d). In line with
the note made at the end of x 2, the  rst term in (3.2 c) should be omitted when the
cusp is formed by the free surface.

(a) Main part of the boundary layer

Consider the main part of the plate’s boundary layer, where ’ = O(1). We
take x = x0, ’ = arctan z0=x0, ~² = Y=

p
x0 for new independent variables instead

of (x0; Y; z 0). In this notation, the boundary-layer ®ow stems from the leading edge
of the plate ’ = º =2 (or ’ = 3º =2) and develops towards ’ = 0 (or ’ = 2º , respec-
tively), which corresponds to the plane Ox0y0 (see  gure 1). For de niteness in what
follows we shall consider the interval 0 6 ’ 6 º =2.

The solution to the system (3.1){(3.2) is sought in the form (» ! 0):

u0 =
@ ~f(~² ; ’)

@ ~²
+ ; w0 = » ¬ ¡1w(~² ; ’) + ; vY =

1p
x

v(~² ; ’) + : (3.3)

Substitution into equations (3.1){(3.2) gives

@3 ~f

@~² 3
+ 1

2
~f
@2 ~f

@ ~² 2
+ 1

2
sin 2’

@ ~f

@ ~²

@2 ~f

@’@~²
¡ @2 ~f

@ ~² 2

@ ~f

@’
= 0;

~f =
@ ~f

@ ~² ~² = 0

= 0;
@ ~f

@ ~² ~² = 1
= U0; (3.4)

@2w

@ ~² 2
+ 1

2
~f
@w

@ ~²
¡ (¬ ¡ 1) cos2 ’

@ ~f

@~²
w + 1

2
sin 2’

@ ~f

@~²

@w

@’
¡ @w

@~²

@ ~f

@’

+ U 2
0 b( ¬ ¡ 1) cos ’ ¡ 1 + cos 2 º ¬

sin 2 º ¬
sin(( ¬ ¡ 2)’) + cos(( ¬ ¡ 2)’) = 0; (3.5 a)

wj~² = 0 = 0; wj~² = 1 = U0b ¡ 1 + cos 2 º ¬

sin 2 º ¬
sin(( ¬ ¡ 1)’) + cos(( ¬ ¡ 1)’) : (3.5 b)

Also,

v =
1

2
~²

@ ~f

@~²
¡ ~f + cos ’ sin ’

@ ~f

@’
:

Appropriate initial conditions can be obtained by setting ’ = º =2 in (3.4), (3.5),
in which case the problem reduces to the two-dimensional Blasius solution for a ®at
plate.

It may be observed from (3.4) that the streamwise pressure gradient does not a¬ect
the main-order equation for the longitudinal velocity component u0. This is due to
the fact that this study is focused on the vicinity of the point O, which is close to the
plate’s leading edge. Thus, inertial and viscous forces in the emerging boundary layer
are estimated as u0@u0=@x0 ¹ (x0)¡1 and @2u0=@Y 2 ¹ (x0)¡1, i.e. are O( » ¡1), whereas
the pressure gradient is only O( » ¬ ¡2), as can be seen from (2.6 d). However, the
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crosswise pressure gradient appears in the cross-stream momentum equation (3.5 a).
Since the crosswise velocity w0 is much smaller than u0, this equation is linear.

The system (3.4) yields the Blasius solution for the function ~f . Equations (3.5) can
be integrated numerically in the usual fashion. The obtained solution is regular for
all ¬ . The skin friction @w=@ ~² (~² = 0; ’) grows from its Blasius value at the leading
edge, ’ = º =2, to a  xed value at ’ = 0. In the limit ’ = 0, equations (3.5) reduce
to the following problem

w~² ~² + 1
2

~fw~² ¡ ( ¬ ¡ 1) ~f~² w + U0
2b( ¬ ¡ 1) = 0; w(0) = 0; w(1) = U0b: (3.6)

Here, the subscript ~² stands for the corresponding derivative. For ¬ = 1:0, 1.1, 1.2,
1.3, 1.4, 1.5, numerical integration of (3.6) gives the following values of the skin
friction coe¯ cient: w~² (0) = 0:33, 0.47, 0.59, 0.71, 0.82, 0.92 (U0 = b = 1).

Limiting streamlines are governed by the equation

dz0

dx0 = » ¬ ¡1 @w(~² ; ’)=@ ~²

@2 ~f(~² ; ’)=@~² 2
~² = 0

+ ; » ! 0: (3.7)

Its numerical integration shows that limiting streamlines that stem from the leading
edge of the plate at  rst develop towards the cusp. However, under the growing
in®uence of the crosswise pressure gradient, they are gradually de®ected from the
cusp and do not reach its surface. Instead, there arises a particular limiting streamline

z0 =
(x0) ¬

¬

@w=@ ~²

@2 ~f=@ ~² 2
~² = ’ = 0

+ ; x0 ! 0; (3.8)

which bounds the rest of the above limiting streamlines from the cusp. Thus, the
gap between the limiting streamline (3.8) and the cusp surface, z0 = b(x0) ¬ =¬ + ,
is inaccessible for the near-wall layer of the viscous ®ow developing from the leading
edge of the plate.

Formal numerical integration of (3.7) shows that this gap is  lled by another set of
limiting streamlines. They stem from the cusp and develop to the line (3.8). However,
this set of limiting streamlines must be discarded as physically unrealistic. The reason
for this is that the obtained solution to the systems (3.4) and (3.5), which we use
to integrate equation (3.7), is based on the initial conditions at the leading edge of
the plate. As we have just seen in the previous paragraph, this solution cannot be
continued into the immediate vicinity of the cusp surface; thus, it is inapplicable
there.

It may also be observed that along the full vertical extent of the boundary layer,
the velocity component normal to the cusp surface,

¡ b(x0) ¬ ¡1u0(~² ; ’) + » ¬ ¡1w(~² ; ’)

1 + b2(x0)2 ¬ ¡2
º (x0) ¬ ¡1( ¡ bu0(~² ; 0) + w(~² ; 0));

is non-zero on the cusp z0 = b(x0)¬ =¬ + . (The exceptions are the plate ~² = 0
and the outer boundary ~² = 1.) This suggests that an additional sublayer must be
set up near the cusp, in order to satisfy the condition of zero normal velocity on the
cusp surface.
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(b) Nonlinear sublayer near the cusp wall

It is reasonable to demand that the scale of this sublayer be compatible with the
thickness of the cusp in the leading-edge region, i.e. O((x0) ¬ ). So, let us introduce
new crosswise scaling ½ = (z0 ¡ b(x0) ¬ =¬ )=(b(x0) ¬ ). (We note in passing that this
scaling can be also derived from the equation of the accessibility line (3.8).) The
solution (3.3) suggests the following expansions:

u0 =
@ ·f

@~²
+ ; w0 = b(x0) ¬ ¡1 @ ·f

@~²
+

@·g

@ ~²
+ ; vY =

1p
x0

·v(~² ; ½ ) + : (3.9)

Here, x0 ! 0, while ~² and ½ are O(1); ·f(~² ; ½ ) and ·g(~² ; ½ ) are unknown functions.
Notice that b(x0) ¬ ¡1@·g=@ ~² is the main term of the expansion of the velocity compo-
nent normal to the cusp surface. Substitution of (3.9) into (3.1), (3.2) leads to the
following nonlinear system:

@3 ·f

@ ~² 3
+ 1

2
·f
@2 ·f

@ ~² 2
+ ¬ ½

@ ·f

@ ~²
¡ @·g

@~²

@2 ·f

@½ @ ~²
¡ ¬ ½

@ ·f

@½
¡ @·g

@½

@2 ·f

@ ~² 2
= 0; (3.10 a)

@3·g

@ ~² 3
+ 1

2
·f
@2·g

@~² 2
+ ¬ ½

@ ·f

@~²
¡ @·g

@ ~²

@2·g

@½ @~²
¡ ¬ ½

@ ·f

@½
¡ @·g

@½

@2·g

@ ~² 2

¡ ( ¬ ¡ 1)
@ ·f

@ ~²

@·g

@~²
¡ ( ¬ ¡ 1)

@ ·f

@ ~²

2

¡ U 2
0 = 0; (3.10 b)

·f =
@ ·f

@ ~²
= ·g =

@·g

@ ~² ~² = 0

= 0;
@ ·f

@ ~² ~² = 1
= U0;

@·g

@ ~² ~² = 1
= 0: (3.10 c)

Also,

·v =
1

2
~²

@ ·f

@ ~²
¡ ·f + ¬ ½

@ ·f

@½
¡ @·g

@½
:

In the limit ½ ! 1, system (3.10) must yield a Blasius solution for the function
·f and also lead to equation (3.6) for the crosswise velocity component, as required
by matching with the solution at the main part of the plate. A comparison between
(3.3) and (3.9) shows that

~f(~² ; ’ = 0) = ·f(~² ; ½ = 1) and w(~² ; ’ = 0) = b
@ ·f

@~²
+

@·g

@ ~²
(~² ; ½ = 1):

Hence, functions ·f and ·g must satisfy the following equations:

@3 ·f

@ ~² 3
+ 1

2
·f
@2 ·f

@ ~² 2
= 0; ·f =

@ ·f

@ ~² ~² = 0

= 0;
@ ·f

@~² ~² = 1
= U0; (3.11 a)

@3·g

@~² 3
+ 1

2
·f
@2·g

@ ~² 2
¡ ( ¬ ¡ 1)

@ ·f

@ ~²

@·g

@~²
+

@ ·f

@ ~²

2

¡ U 2
0 = 0; ·g =

@·g

@ ~² ~² = 0

=
@·g

@ ~² ~² = 1
= 0;

(3.11 b)

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


3162 G. G. Vilensky

2 4 6 8 100

0.2

0.4

0.6

0.8

1.0

h

f0’, g0’

g0’

f0’

Figure 2. Numerical solutions for the functions f 0
0 ( ¹² ), g 0

0 ( ¹² ).

when ½ tends to in nity. It may be observed that the solution to equations (3.11)
also satis es system (3.10). However, in this case the velocity component normal to
the cusp surface does not vanish as ½ tends to zero. Thus, in the vicinity of the cusp
this solution should be discarded for the reasons presented in the previous section.

In order to shed some light on the ®ow structure near the rib of the corner formed
by the cusp and the plate, consider the limit ½ ! 0, ·² = ( ¬ ¡ 1)1=4~² =½ 1=4 = O(1).
Then the solution to system (3.10) has the following form (as ½ ! 0):

·f = ( ¬ ¡ 1)¡1=4f0(·² )½ 1=4 + ; ·g = ( ¬ ¡ 1)1=4g0(·² ) ½ 3=4 + : (3.12)

The functions f0(·² ) and g0(·² ) satisfy the system:

f 000
0 + 3

4
g0f 00

0 = 0; g000
0 + 3

4
g0g00

0 ¡ 1
2
g02

0 ¡ f 02
0 + U2

0 = 0; (3.13 a)

f0(0) = f 0
0(0) = 0; f 0

0(1) = U0; g0(0) = g0
0(0) = 0; g0

0(1) = 0:
(3.13 b)

Here, primes stand for the derivatives with respect to ·² . As expected, the velocity
component normal to the cusp (i.e. @·g=@ ~² ) is now zero at ½ = 0. The functions f 0

0(·² )
and g0

0(·² ) are plotted in  gure 2 (U0 = 1).
Limiting streamlines are given by the equation

z0 = c +
b( ¬ ¡ 1)

¬

g00
0 (0)

f 00
0 (0)

(x0) ¬ =2
2

+
b(x0) ¬

¬
+ ;

f 00
0 (0) º 0:440; g00

0 (0) º 1:02; (3.14)

where c = const: The case where c > 0 must be discarded, since it is contrary to the
assumption of small ½ made previously. When c is negative, limiting streamlines stem
from the cusp in the outward direction. These limiting streamlines correspond to the
boundary-layer ®ow that develops from the wall of the cusp towards the accessibility
line (3.8). It is driven by the crosswise pressure gradient due to the cusp and is fully
nonlinear.

An attempt to numerically integrate system (3.10) starting with the initial condi-
tions (3.12) (say, using the Crank{Nicolson scheme) features numerical instability. It
may be observed that numerical integration of system (3.10) with the initial condi-
tions speci ed at ½ = 1 in accordance with (3.11) also becomes unstable when ½ is

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Three-dimensional boundary-layer ° ow 3163

small. The reason for this is that the coe¯ cient ¬ ½ @ ·f=@~² ¡ @·g=@ ~² before the cross-
stream derivatives of the velocity components @=@ ½ (@ ·f=@ ~² ; @·g=@ ~² ) in system (3.10)
changes its sign. The analysis of these numerical solutions shows that in the immedi-
ate vicinity of the section ½ = 0, this coe¯ cient is negative for all ~² (as is also apparent
from (3.12)). This implies that the correct marching direction in this region is that of
increasing ½ . On the other hand, when ½ is large, the above coe¯ cient is positive, and
the correct marching direction is that of decreasing ½ . Between the sections ½ = 0
and ½ = 1 there is a bu¬er domain where ¬ ½ @ ·f=@ ~² ¡ @·g=@ ~² is negative for small ~²
and positive for large ~² . Thus, whatever matching direction in ½ is initially chosen,
the resulting parabolic problem features inverse `time’ direction in this domain and is
unstable to small perturbations of initial data (Lattes & Lions 1967). Unfortunately,
owing to the instability, it is di¯ cult to determine the boundaries of this domain
reliably.

However, in the present context the change of marching direction is welcome, since
it provides a scenario to simultaneously take into account the state of the ®ow both
at ½ = 1 and in the vicinity of the cusp surface ½ = 0. Indeed, in order to avoid the
phenomenon of inverse `time’ direction for the parabolic system (3.10), we impose
the initial conditions (3.12) as ½ ! 0 and (3.11) as ½ ! 1, i.e. we seek the solution
to the following problem:

û =
@ ·f

@ ~²
; ŵ =

@·g

@~²
; (3.15 a)

@2û

@ ~² 2
+ 1

2
·f
@û

@ ~²
¡ (ŵ ¡ ¬ ½ û)

@û

@½
¡ ¬ ½

@û

@ ~²

@ ·f

@½
+

@û

@ ~²

@·g

@½
= 0; (3.15 b)

@2ŵ

@ ~² 2
+ 1

2
·f
@ŵ

@ ~²
¡ (ŵ ¡ ¬ ½ û)

@ŵ

@ ½
¡ ¬ ½

@ŵ

@ ~²

@ ·f

@½
+

@ŵ

@~²

@·g

@½
¡ ( ¬ ¡ 1)(ûŵ + û2 ¡ U2

0 ) = 0;

(3.15 c)

û = ·f = ŵ = ·gj~² = 0 = 0; û(~² ! 1) = U0; ŵ(~² ! 1) = 0; (3.15 d)

û( ½ ! 0) =
@f0

@·²
; ŵ( ½ ! 0) = ½ 1=2 @g0

@·²
; (3.15 e)

û( ½ ! 1) =
@ ·f 1

@ ~²
; ŵ( ½ ! 1) =

@·g 1

@~²
: (3.15 f)

Equations (3.15 a){(3.15 d) are equivalent to (3.10), the initial conditions (3.15 e) fol-
low from (3.12), the functions ·f1 (~² ) and ·g 1 (~² ) satisfy systems (3.11 a) and (3.11 b),
respectively.

The following note should be made in connection with the far- eld boundary con-
ditions (3.15 f). Recently, Dhanak & Duck (1997) showed that in certain situations
the far- eld conditions may permit several branches of solution and, thus, be a poten-
tial source of non-uniqueness. However, since equation (3.11 b) is linear, this is not
the case with problem (3.15). It may be shown that the solution to system (3.11 a),
(3.11 b), which in e¬ect determines the functions on the right-hand sides of (3.15 f),
is unique for all ¬ > 1.

In order to construct a numerical solution to system (3.15), we adopt the approach
similar to that proposed by Korolev for triple-deck interactions (Sychev et al . 1987,
pp. 238{244). However, in the present context we do not make an allowance for
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viscous{inviscid interaction, since there is no a priori evidence that the solution to
system (3.15) may feature any singularity.

Let a = ·f(~² )=2, c = ŵ ¡ ¬ ½ û,

V =
û
ŵ

; B = ¡ ( ¬ ¡ 1)
0

ûŵ + û2 ¡ U 2
0

; D = ¬ ½
@V

@ ~²
; E = ¡ @V

@ ~²
;

V ¤ =
@

@·²

f0(·² )

½ 1=2g0(·² )
; V ¤ ¤ =

d

d~²

·f1 (~² )
·g 1 (~² )

; V 1 =
U0

0
:

Problem (3.15) can then be rewritten as follows:

@2V

@ ~² 2
+ a

@V

@ ~²
¡ c

@V

@½
¡ D

@ ·f

@½
¡ E

@·g

@½
+ B = 0; (3.16 a)

V =
@

@~²

·f
·g

; (3.16 b)

V j~² = 0 = 0; V j~² = 1 = V 1 ; V j ½ ! 0 = V ¤ ; V j ½ = 1 = V ¤ ¤ : (3.16 c)

Consider the following  nite-di¬erence approximations of equations (3.16 a) and
(3.16 b):

Vjk + 1 ¡ 2Vjk + Vjk¡1

(¢ ² )2
+ aj;k

Vj;k + 1 ¡ Vj;k¡1

2¢ ²
¡ jcj;kjVj;k ¡ Vj¡s;k

¢ ½

¡ Dj;k

·fj;k ¡ ·fj¡1;k

¢ ½
¡ Ej;k

·gj;k ¡ ·gj¡1;k

¢ ½
+ Bj;k = 0;

j = 1; 2; : : : ; M ¡ 1; k = 1; 2; : : : ; N ¡ 1; (3.17 a)

·fj;k = ·fj;0 + ¢ ²

k

i = 1

1
2
(ûj;i + ûj;i¡1); ·gj;k = ·gj;0 + ¢ ²

k

i= 1

1
2
(ŵj;i + ŵj;i¡1);

j = 1; 2; : : : ; M; k = 1; 2; : : : ; N; (3.17 b)

which are second-order accurate in ~² and  rst-order accurate in ½ . Here, F ( ½ = ½ j ;
~² = ~² k) = Fj;k for any function F ( ½ ; ~² ), ½ j = "+j¢ ½ , j = 0; 1; : : : ; M , and ~² k = k¢ ² ,
k = 0; 1; : : : ; N . M and N are some large integers, " > 0 is a su¯ ciently small number.
Also, s = sing(cj;k), i.e.

@V

@½
º (Vj;k ¡ Vj¡1;k)=¢ ½ ; for cj;k > 0

and

@V

@½
º (Vj + 1;k ¡ Vj;k)=¢ ½ ; for cj;k < 0:

The no-slip and outer conditions become

Vj;0 = ·fj;0 = ·gj;0 = 0; Vj;N = V 1 ; j = 1; 2; : : : ; M ¡ 1: (3.17 c)
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Figure 3. Longitudinal and crosswise velocity pro¯les in the inner region:
1, ½ = 0:0001; 2, ½ = 0:2; 3, ½ = 0:6; 4, ½ = 5:0; 5, ½ = 10:0.

0

1

2

3

4

2 4 6 8 10
t

(i)
(ii)

Figure 4. Distribution of the skin friction coe± cients in the inner region:
(i) @ ~u=@ ~² (~² = 0); (ii) @ ~w=@~² (~² = 0).

The conditions in ½ are approximated as follows:

V0;k = V ¤
0;k; VM;k = V ¤ ¤

k ; k = 0; 1; : : : ; N: (3.17 d)

Since system (3.17) is nonlinear|and, as we have already seen, there is no march-
ing direction for it|global iterations are needed in order to obtain the solution. The
simplest approach is to solve system (3.17) for Vj;k assuming that the coe¯ cients aj;k,
Bj;k, cj;k, Dj;k, Ej;k are known from the previous iteration. This can be done, say,
with the help of the generalized Thomas algorithm (see Fletcher 1991, pp. 238{246).
Then the above coe¯ cients can be calculated again and the iteration cycle repeated.

The calculations were carried out with M = 50, N = 80, ¢ ½ = 0:2, ¢ ² = 0:1,
with the values of the outer boundaries being ½ 1 = M¢ ½ = 10 and ~² 1 = N¢ ² = 8.
In order to test the accuracy of the scheme, the calculations were repeated with
the maximum values of ¢ ½ and ¢ ² being lowered by a factor of three and two,
respectively. The maximum values of the outer boundaries were increased by a factor
of 1.5. The iterations were terminated when the maximum di¬erence between the
two subsequent approximations of the solution was less that 10¡6. It usually took
about 23 iterations to achieve this level of convergence. Variations of the obtained
solutions were within 1%. Typical velocity and skin friction patterns are presented
in  gures 3 and 4 ( ¬ = 1:5, U0 = b = 1).
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4. Discussion

This study has concentrated on the structure of the boundary-layer ®ow developing
at a ®at plate under the action of the pressure gradient caused by a cusp secured to
the plate’s surface. The major  ndings of the work are as follows.

The plate’s boundary-layer ®ow near the curvilinear corner formed by the cusp
and the plate consists of two characteristic domains: an outer region (i.e. the main
part of the boundary layer considered in x 3 a), and an inner region in the immediate
vicinity of the rib of the corner (i.e. the nonlinear sublayer near the cusp wall, see
x 3 b). The outer boundary-layer ®ow starts at the leading edge of the plate and
occupies most of its surface. The ®ow is quasi-two-dimensional here, with the cross-
stream momentum equation being linear. Since the velocity component orthogonal
to the cusp does not vanish at its surface, this ®ow is separated from the wall of the
corner by an accessibility line (3.8) and never reaches it.

The inner region lies near the cusp surface and contains another boundary-layer
®ow. The latter originates at the wall of the cusp and is driven by the crosswise
pressure gradient outward. It has the same vertical thickness as the outer region, but
the growth of the cross-stream perturbations near the cusp makes it fully nonlinear.
The inner region is characterized by the existence of a bu¬er zone where the inner
®ow meets with the outer boundary layer, which develops from the leading edge of
the plate. The most striking feature of the inner region is that, though its governing
equations are inherently parabolic, two initial conditions are needed to determine
the solution uniquely. One of them must be stated at the cusp surface and the other
one at the interface of the inner and the outer regions. This is possible only thanks
to the change of sign of the coe¯ cient before the crosswise derivative of the velocity
in the governing equations, which controls the direction of disturbance propagation.
It is this anomalous behaviour of the governing equations in the bu¬er region that
provides a mechanism for the two boundary-layer ®ows above to merge smoothly.

In conclusion, we should like to consider the obtained results in the context of the
previous work, and especially that of Rubin (1966), which describes the limiting case
of a 90¯ streamwise corner formed by two ®at plates.

It should be noted that the emergence of the double structure discovered above is
entirely due to the curvature of the cusp µ º ¡ b( ¬ ¡ 1)(x0) ¬ ¡2 + , x0 ! 0. If the
curvature were to be identically zero (i.e. b = 0), the double structure would vanish
and we would arrive at the classical Blasius solution for the whole of the plate. This
would be exactly the result obtained by Rubin (1966) for region II of his paper.
Thus, we see that the curvature of the wall radically changes the structure of the
plate’s boundary layer near the rib of the corner. It may be shown that while the
®ow in the boundary layer that develops along the cusp wall (region III in Rubin’s
notation) remains almost una¬ected by the curvature, the structure of the overlap
region (termed the `corner layer’ in Rubin (1966)) becomes somewhat di¬erent. Since
the main objective of this work is to examine possible changes in the plate’s boundary
layer provoked by the curvature of the wall, rather than the e¬ects con ned to the
corner layer, and owing to the restrictions imposed on the size of the paper, we shall
take only a brief look at the features of the corner layer here.

Consider  rst the boundary-layer ®ow which develops over the cusp surface in
the vicinity of its leading edge. Its thickness is O(Re¡1=2), and the appropriate
boundary-layer coordinate is ± ¹ nRe1=2. Here n is the normal distance to the cusp.
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At a su¯ ciently small vertical distance y0 from the plate, this boundary-layer ®ow
overlaps with the boundary-layer ®ow over the plate.

On the other hand, we have seen in x 3 b that solution (3.12), which describes
the boundary-layer ®ow over the plate in the immediate vicinity of the cusp wall,
is characterized by the local vertical variable ·² . Since, in the vicinity of the origin,
n º z0 ¡ b(x0) ¬ =¬ , we  nd that ·² º ( ¡ µ)1=4Re1=2y0=n1=4. By virtue of the fact that
the characteristic length-scales ± and ·² must be of equal order of magnitude in the
overlap region, we obtain the following asymptotic relationship

y0 ¹ n5=4=( ¡ µ)1=4: (4.1)

If we now assume that n = O(Re¡1=2), then the correct vertical scaling for the
overlap region in the present ®ow situation appears to be O(Re¡5=8), rather than
O(Re¡1=2) as is the case with the corner with ®at walls. The case of a 90¯ streamwise
corner formed by two ®at plates is recovered when the curvature of the cusp, µ,
becomes su¯ ciently small. Indeed, if we assume that b = O(Re¡1=2), then y0 becomes
O(Re¡1=2) in the overlap region, as suggested by expression (4.1).

It may be inferred from the above discussion that the vertical extent of the overlap
region must depend on the order of magnitude of the curvature of the wall. A more
detailed quantitative analysis of the ®ow structure in the overlap region is obviously
needed. This study is currently under way.

The author thanks the referees for their useful comments and suggestions.

References

Abramovitz, M. & Stegun, I. 1979 Handbook on mathematical functions. Moscow: Nauka. (Rus-
sian edition.)

Anderson, D. A., Tannehill, J. C. & Pletcher, R. H. 1990 Computational ° uid mechanics and
heat transfer, vol. 2, ch. 8, x 8.6. Moscow: MIR. (Russian edition.)

Dhanak, M. R. & Duck, P. W. 1997 The e® ects of freestream pressure gradient on a corner
boundary layer. Proc. R. Soc. Lond. A 453, 1793{1815

Fletcher, C. A. J. 1991 Computational techniques for ° uid dynamics, vol. 1: Fundamental and
general techniques. Springer. (Russian edition.)

Imai, I. 1953 Discontinuous potential ° ow as the limiting form of the viscous ° ow for vanishing
viscosity. J. Phys. Soc. Japan 8, 399.

Lattes, R. & Lions, J.-L. 1967 M¶ethode de quasi-reversibilit¶e et applications. Paris: Dunod.

Nazarov, S. A. & Plamenevskij, B. A. 1991 Elliptic problems in domains with piecewise smooth
boundaries. Moscow: Nauka. (In Russian.)

Rubin, S. G. 1966 Incompressible ° ow along a corner. J. Fluid Mech. 26, 97{110.

Smith, F. T. & Gajjar, J. 1984 Flow past wing{body junctions. J. Fluid Mech. 144, 191{215.

Sychev, V. V., Ruban, A. I., Sychev, Vic. V. & Korolev, G. L. 1987 Asymptotic theory of
separating ° ows (ed. V. V. Sychev). Moscow: Nauka. (In Russian.)

Walton, A. G. & Smith, F. T. 1997 Concerning three-dimensional ° ow past a tall building on
° at ground. Q. J. Appl. Math. 50, 97{128.

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://ernesto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-1120^28^29144L.191[aid=541481,csa=0022-1120^26vol=144^26iss=^26firstpage=191]
http://rsta.royalsocietypublishing.org/

